Birzeit University Mathematics Department Math 337

Answer any 10 of the following

1) Show that S_{3} is not isomorphic to Z_{6}
S_{3} is not cyclic but Z_{6} is cyclic
2) Show that a group G of order 11 is cyclic

By lagrange's theorem any none identity element is a generator
3) Show that any infinite cyclic group is isomorphic to Z.
notes
4) Find all elements of order 10 in $Z_{10} \oplus Z_{4}$
see notes
5) Find all elements of order 8 in $Z_{10} \oplus Z_{4}$
none
6) If G is abelian group of odd order. Show that $f: G \rightarrow G$ defined by $f(x)=x^{2}$ is a group isomorphism
f is well-defined since if $a=b$, then $a^{2}=b^{2}$, so $f(a)=f(b)$
Let $a, b \in G$. Then $f(a b)=(a b)^{2}=a^{2} b^{2}=f(a) f(b)$
Let $a, b \in G$ such that $f(a)=f(b)$, then $=a^{2}=b^{2}$, so $\left(a b^{-1}\right)^{2}=e$, and so $\left|a b^{-1}\right| \leq 2$, but the order of G is odd so $\left|a b^{-1}\right|=1$ and so $a b^{-1}=e$, and so $a=b$, and so f is one to one

Finally, let $|G|=k$ be odd and so there exist $m, n \in Z$ such that $2 m+n k=1$, and let $y \in G$, so $y^{2 m+n k}=y^{2 m}$ and so let $x=y^{m} \in G$, and $f(x)=y$, so it is onto
7) List all group isomorphisms from Z_{8} into Z_{8}

Let $f: Z_{8} \rightarrow Z_{8}$ defined by $f(1)=a$, so $|a|$ divides $|1|=8$, so $|a|=1,2,4,8$ and so $a=0,4,2,6,1,3,5,7$
8) List all group isomorphisms from Z_{8} into $Z_{4} \oplus Z_{2}$

Let $f: Z_{8} \rightarrow Z_{4} \oplus Z_{2}$ defined by $f(1)=(a, b)$, so $|(a, b)|$ divides $|1|=8$, and $|(a, b)|$ divides $\left|Z_{4} \oplus Z_{2}\right|=8$, so $|(a, b)|=1,2,4$ and so $(a, b)=(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)$
9) List all group isomorphisms from $Z_{4} \oplus Z_{2}$ into $Z_{2} \oplus Z_{4}$
$f: Z_{4} \oplus Z_{2} \rightarrow Z_{2} \oplus Z_{4}$ defined by $f(1,0)=(a, b), f(0,1)=(c, d)$, so $|(a, b)|$ divides $|(1,0)|=4,|(a, b)|$ divides $\left|Z_{2} \oplus Z_{4}\right|=8$, so $|(a, b)|=1,2,4$ and so $(a, b)=$ $(0,0),(0,1),(1,0),(1,1),(0,2),(1,2),(0,3),(1,3)$. Similarly $|(c, d)|$ divides $|(0,1)|=2$ and divides $\left|Z_{2} \oplus Z_{4}\right|=8$
$(c, d)=(0,0),(1,0),(0,2),(1,2)$
10) If G is an abelian group of order 14. Show that G has an element of order 7
G is either isomorphic to D_{7} or to Z_{14}, and since G is abelian and D_{7} is not abelian so G is isomorphic to Z_{14} so it is cyclic and by FTOCG G has an element of order 7
11) State and prove Lagrange's Theorem.
12) Prove that A_{4} has no subgroup of order 6

See notes

