Birzeit University Mathematics Department Math 337

Exam2

Second Semester 2021/2022

Answer any 10 of the following

- Show that S₃ is not isomorphic to Z₆
 S₃ is not cyclic but Z₆ is cyclic
- 2) Show that a group G of order 11 is cyclicBy lagrange's theorem any none identity element is a generator
- Show that any infinite cyclic group is isomorphic to Z. notes
- 4) Find all elements of order 10 in $Z_{10} \oplus Z_4$ see notes
- 5) Find all elements of order 8 in $Z_{10} \oplus Z_4$ none
- 6) If G is abelian group of odd order. Show that $f: G \to G$ defined by $f(x) = x^2$ is a group isomorphism

f is well-defined since if a = b, then $a^2 = b^2$, so f(a) = f(b)Let $a, b \in G$. Then $f(ab) = (ab)^2 = a^2b^2 = f(a)f(b)$

Let $a, b \in G$ such that f(a) = f(b), then $= a^2 = b^2$, so $(ab^{-1})^2 = e$, and so $|ab^{-1}| \leq 2$, but the order of G is odd so $|ab^{-1}| = 1$ and so $ab^{-1} = e$, and so a = b, and so f is one to one

Finally, let |G| = k be odd and so there exist $m, n \in Z$ such that 2m + nk = 1, and let $y \in G$, so $y^{2m+nk} = y^{2m}$ and so let $x = y^m \in G$, and f(x) = y, so it is onto

7) List all group isomorphisms from Z_8 into Z_8

Let $f: Z_8 \to Z_8$ defined by f(1) = a, so |a| divides |1| = 8, so |a| = 1, 2, 4, 8 and so a = 0, 4, 2, 6, 1, 3, 5, 7

8) List all group isomorphisms from Z_8 into $Z_4 \oplus Z_2$

Let $f: Z_8 \to Z_4 \oplus Z_2$ defined by f(1) = (a, b), so |(a, b)| divides |1| = 8, and |(a, b)| divides $|Z_4 \oplus Z_2| = 8$, so |(a, b)| = 1, 2, 4 and so (a, b) = (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)

9) List all group isomorphisms from $Z_4 \oplus Z_2$ into $Z_2 \oplus Z_4$

 $f: Z_4 \oplus Z_2 \to Z_2 \oplus Z_4$ defined by f(1,0) = (a,b), f(0,1) = (c,d), so |(a,b)| divides |(1,0)| = 4, |(a,b)| divides $|Z_2 \oplus Z_4| = 8$, so |(a,b)| = 1, 2, 4 and so (a,b) = (0,0), (0,1), (1,0), (1,1), (0,2), (1,2), (0,3), (1,3). Similarly |(c,d)| divides |(0,1)| = 2 and divides $|Z_2 \oplus Z_4| = 8$

- (c,d) = (0,0), (1,0), (0,2), (1,2)
- 10) If G is an abelian group of order 14. Show that G has an element of order 7 G is either isomorphic to D_7 or to Z_{14} , and since G is abelian and D_7 is not abelian so G is isomorphic to Z_{14} so it is cyclic and by FTOCG G has an element of order 7
- 11) State and prove Lagrange's Theorem.
- **12)** Prove that A_4 has no subgroup of order 6 See notes